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SUMMARY 

ComputatioiiS of satellite position and attitude will have to take 
into account the pressure exerted by the solar radiation which, in 
general, results both in a force and a torque acting on the body. 

The well-known value of the solar constant serves for the 
computation of the integrated radiation force which is given the form 

F   =   p.- A- (f 
in analogy to aerodynamic forces (A = projected area; p0 = radiation 
pressure in the vicinity of the earth). The "radiation force 
coefficient" Cp has been determined, in the present study, for several 
convex bodies and was found within the limits 

0    <   CF    <    & 

Since part of the radiation force is caused by the reflection of 
light the optical properties of common materials, as transparency, 
absorption, reflectivity, have been reviewed. Their dependence on 
angle of incidence and wave-length complicates the computation of Cp. 
However, adequate values cannot be obtained from geometry alone without 
due regard to the physics involved in the reflection process. 



I.  INTRODUCTION 

A. General 

Some of the exterior forces that will or may act on a satellite 
are provided by: 

Gravitation 

Air Drag 

Radiation Pressure 

Meteoric Impacts 

Cosmic Rays 

The Magnetic Field of the Earth 

Orbit calculations are largely based on the gravitational and aerodynamic 
forces. Attitude control and determination of position, however, require 
the study of the remaining forces. 

The object of the present report is to investigate the influence 
of the radiation pressure of the sun's light. 

When studying the radiation effect, we have to consider separately 
the influence of the incoming light and that of the reflected light. The 
latter depends, in a large measure, on the reflectivity of the opaque 
surface material. For transparent media, the transparency also has to be 
considered. All bodies, however, show a certain degree of reflectivity. 
Both the reflectivity and the transparency are functions of the angle of 
incidence of light, of the wave-length, and of the refractive index. 
These facts complicate our present problem. It will be necessary to 
derive exact formulas for the force produced by the radiation. In 
analogy to the aerodynamic equation for the drag, the radiation force, 
F, acting on a body will be expressed in the form: 

F  ~ f,  ' A'   Cf ; (1) 

where A means the projected area of the body in the direction of the 
light, and p0 is the radiation pressure of the sun's light in the 
vicinity of the earth. We can consider both p0 and A as given and» 
therefore, it is necessary to derive formulas for the coefficient, Cp, 
which we refer to as the radiation force coefficient. Determination of 



this coefficient CL is the first step in the studies concerning the 
exterior forces acting on satellites. The present report will especially 
deal with the case of convex-shaped bodies, A second publication on 

concave-shaped bodies is in preparation. 

For all computations, some physical data have to be known, 
especially the reflectivity. A few useful tables are given in this 
report. For some general purpose a set of tables containing the values 
of the reflectivity in the "Gaussian plane of the indices of refraction" 
is planned. 

B.  The Radiation of the Sun 

In this report, only the wave radiation of the sun in the 
vicinity of the earth is considered. Corpuscular radiation will be 
excluded.  Since the energy curve of the sun's wave radiation includes 
an interval stimulating the sensibility of the human eye, the sun's 
radiation is mainly felt as light and, therefore, the expression "light 

pressure" is often used instead of "radiation pressure." 

The total radiation of the sun amounts to approximately 3.78 X 
10  erg/sec. The radiation emitted by the sun extends from short ultra- 
violet to long infra-red wave-lengths. According to its absorption 
spectrum, the sun is a GO-star with the maximum radiation at the wave- 
length 4780 angstroms. Diagrams that show the distribution of energy 

over the whole spectrum are well known.  (Ref. 1) 

Only a portion of the sun's output reaches the vicinity of the 
earth. The free space intensity of the solar radiation flowing per 
unit time through a surface of 1 cm placed normally to the light 
direction of the earth's mean solar distance (1,496 x 10  cm) is known 
as the solar constant of radiation, S, and has the value (Ref. 2) 

S = 1.97 * 0.01 cal cm"2 min-1 

= 1.374 • 106 erg cm"2 sec "1 
(2) 

If the radiation is to be considered over a long time period, it is 
necessary to include the change in distance between the earth and the 

sun. Because of the eccentricity, e, of the orbit of the earth the 
intensity, J, of the radiation varies by 7% between perihel and aphel: 



The values of the energy of the sun's radiation at the extreme distances 
are; 

Energy of Sun's 
Earth-Sun    Radiation in 

Distance in cm  erg cm"2 sec"^- 

Perihel 1.4710 x 1013    1.351 x 106 

Aphel 1.5210 x 1013    1.397 x 106 

The earth-satellite distance is small when compared to the earth-sun 
distance. For example, in the case of a satellite at a distance of 
nearly 6 earth radii, the error in radiation intensity is only 0.12% 
using the earth-sun distance instead of the sun-satellite distance. 

In order to compute the effect of the radiation on a satellite, 
the radiation of subdivided parts of the spectrum is needed. In Table 
I the distribution of energy in the spectrum of the sun is given, taken 
from Linke's "Meteorologisches Taschenbuch." (Ref. 3) This table 
gives the sun's energy in cal cm"2 min"l per 100 angstroms. The values 
of Table I are plotted in Figure 1, curve "a." The scale is 

Abscissa   1.00 cm   0.2 x 10'^ cm 

Ordinate   1.00 cm   2'103 cal cm"3 min"1 

and hence 1 cm2 of the graph is equal to 0.04 cal cm" min" . Thus the 
total area under curve "a" represents the value S = 1.98 cal cm"2 min . 

From Table I another graph was established. Figure 2, in which 
curve "a" gives the amount of the solar constant from X = 0 until a 
desired wave-length is reached or for any wave-length interval by 
using the difference in the values of two ordinates. 

The sun's radiation stems from a surface region whose 
temperature is nearly 6000° K. As the sun's radiation sometimes is 
likened to that of a black body, it is of interest to plot the 
distribution of radiation density for a black body of the temperature 
6000° K, which is given by Planck's law (Appendix). 

14X '*.Kr(*Al,*r-l)'^[J£] (4) 



In Figrue 1, curve "b" shows Planck's radiation function for a black 
body of 6000° K. Curve "b" in Figure 2 presents the portions of the 
total radiation of a black body (6000° K) in the same way as does curve 
"a" for the solar radiation. 

C. The Mechanical Force Exerted by Radiation 

In the vicinity of the earth,the sun's light is to be considered 
as a system of plane, finite, electromagnetic waves, traveling in empty 
space. By Maxwell's electromagnetic theory, an impulse in the direction 
of the beam is associated to each wave. Let the quantity J^Watt cnT^J 
denote the intensity of the light waves per time and surface units. 
When the wave of light meets the surface of a body perpendicularly, the 
radiation pressure is given by 

cr 
P   -     —^ ^      (5) 

The value of_J is equal to the magnitude of the Poynting vector, E x H, 
where E and H are the electromagnetic field vectors. We measure the 
electromagnetic quantities in the so-called Giorgi system, as employed, 

e. g., in reference (4). Therefore p0, the radiation pressure at the 
earth's mean solar distance, is given by 

h s _5_ -  IJUL El -    j 
/C        /€ /C 

3-/0" /U-t.iUA. (6) 

¥. J-r* 
/****■ 

The force due to radiation of normal incidence acting on a plane surface 
element dA0 is: 

d? * fa- oC4, (7) 

If the light rays form an angle, di ,  with the surface normal, the force 
is given by: 

(8) 

df s» fa - at A, ' Art«, 



It will produce a translatory motion, which moves a body away from the 
sun. If the material of the body possesses a transparency, only that 
part of the light which is not allowed to pass through will contribute to 

the radiation force. The transparency is a function of the angle of 
incidence and of the refractive index of the material which in turn 
depends on the wave-length. It should therefore be written as: 

T =   Tf^cx), o(J 

With a partly transparent surface material the force element is smaller 
than before: 

aCF   * f>0-0C4a'('/-7'(''»*Cx)/e()).st<noO. (9) 

In satellites we encounter shapes like spheres, cylinders, 
cones, and planes. Most satellites are composed of parts of such 
bodies, e. g., the communication satellites. Antennas in use are of 
spherical and parabolic shape. Only in special areas the radiation will 
act normal to the surface.  If the surface is not normal to the 
radiation, there are force components due to the reflectivity that give 
lateral displacements. 

The reflectivity of a material is a function of the index of 
refraction, i. e., of the wave-length, and of the angle of incidence; 
thus we write: 

K  =   K f *(*),*, J , 
In the following discussion "ideal reflection" will be understood to 
mean that the beam follows the ordinary reflection law, and that it 
experiences no loss in energy (R = 1.) 

In summary, it can be stated that the radiation force acting 
on a satellite is a function of the following quantities: 

1. The sun-satellite distance, /i , 

2. The size and the shape of the surface, 

3. The optical properties: reflective ratio and 
transparency ratio, 

4. The angle of incidence of light, cb , 

5. The distribution of the radiation energy in the 
solar spectrum. 



Before we study the effect of radiation pressure on selected 
bodies of different shapes we will give a survey about some facts in 
optics, which will be needed for a proper evaluation. 

D. Optical Properties 

a. The Reflecting Power of Transparent or Dielectrical Media 

The oscillation of the incident light may be assumed to 
consist of two equal components that are plane-polarized in mutually 
perpendicular azimuths: one perpendicular to the plane of incidence 
and the other in the plane of incidence. 

The following symbols are used; 

Ex ' E/j : Amplitudes of the electric field 
intensity perpendicular and parallel 
to the plane of incidence 

J       ;  Intensity of the light 

i, r, t  :  Indices referring to incident, 
reflected and transmitted beam 

/? Angle of refraction 

The amplitudes of the electric field intensity are given by Fresnel's 
reflection equations: 

zl -   -iL 

C...     *" d,.'  If -t** (*-*ß) (10) 

£ 

is tz.  % ———^—— 

v   yUufarf) *** fyyij 



From these intensities become: 
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il 

r- 

SU*€> Y*~/)J 

r - 7 C       ^4sHt'JoS'S&**'J/ P- 
*    /t**- YotipJ-sO+vYot-pJ 

The reflectivity, R, and the transparency, T, are defined by: 

X   = 
Tx" 

Ji 

/i 

7/ 

en) 

(12) 

T = 

Ji        . Jtf 
Tx J"tf 

(13) 

The angle  [y    is related to öt by Snail's law: 

/Ute fb 
sa   sHr. (14) 



where n is the refractive index. 

x 
There is a special case for tano^= n (Brewster's law), where E^ 
becomes zero and all of the reflected light oscillates 
perpendicularly to the plane of incidence. For normal incidence (angle 
CO =    0, therefore, 0=0),  the equations of reflection and transparency 
can be transformed into the expressions: 

(15) 

T Z f^C-f-/ ) 

R becomes unity only when n is infinite, which is the case of an ideal 
reflector. Materials with infinite refractive indices have an electrical 
conductivity and will be considered in the next section. 

From the equations (12) the reflectivity can be calculated. 
Figure 3 shows the variation of reflecting power with the angle of 
incidence for crown glass (n = 1.5): curve a- for light polarized in 
the plane of incidence, curve a^ for light polarized perpendicularly 
to the plane of incidence. Since it was assumed at the very beginning 
of this section that, for incident light, the two intensity components 
are equal, it is assumed in the figure that 

?: ~ i: • i (16) 

b. The Reflecting Power of Absorbing Materials or 

Electrical Conductors 

These materials include metals and alloys. Instead of the 

real refractive index n it is convenient here to use a complex 
refractive index N = n-ki = n (1 -^C i). In this expression, n is no 
longer defined in the same way as in Snell's law. This law is still 
effective when n is replaced by N, but it has only a formal meaning. 

The angle/3 now assumes a complex value, (3 = ^+ T'i. Fresnel's 
equations for the intensity of light change to  (Ref. 5): 
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(17) 

where the angles 7^ and f*axe.  evaluated from; 

*    .      s** 

I 
-pi**, y* da) 

'n,(/+#1') ^cz 

/        '*** **L / —. '***' loC 

The quantities^ and .« in the expression for N are termed as follows: 

<d   = extinction or absorption index 

4t       = extinction or absorption coefficient 

These quantities can be determined, e.g., by measuring the light 
intensity, J, transmitted through thin films of the opaque material. 

The following formulas are found to hold; 
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with 

where 

7 * r. 
T - £ • 

X 
*/ 

*    m, 

(19) 

A/        wave-length in vacuo 

^   wave-length inside the medium 

^   the thickness of the medium. 

As in the case of dielectrical substances the reflectivity is given by a 
particularly simple expression, if ^ ~ß=  0 (normal incidence); 

% .. iL s^: * (*-')i+*v   (20) 

While the index of refraction of a transparent medium varies only 
slightly with the wave-length of light, the index for metals shows marked 
dependence on wave-length. A great number of determinations have been made 
on all kinds of materials and the data are published in many physical 
handbooks, e. g., (Ref. 6). Values for the reflectivity of light are 
also tabulated. But the great majority of the tables contain only the 
reflection for normal incidence of light. Values for oblique incidence 
seem to be very rarely published. Generally, it will be noticed from 
available information that the reflectivity of most conducting materials 
is low in the ultra-violet and increases with the wave-length to 
approximately 907» or more.  In order to give a survey on the reflectivity 
and the index of refractionj two graphs were made. Figure 4 shows, in 
the Gaussian plane, the index of refraction, N = n - ki, for a number 
of metallic elements; the values are taken from Reference 7. The abscissa 
denotes the real part of the refractive index, and the ordinate the 
imaginary part. The different curves refer to selected metals and show 
how their index N changes with the wave-length. The three-place values 
at the beginning and end of the curves give the wave-length in ttt/U' 
(= 10"-' cm). In order not to overcrowd the graph, only some samples 
of elements are shown. From equation 20 the reflectivity at zero 
angle of incidence was computed and plotted in Figure 5. The coordinates 
are the same as in Figure 4 and the curves give the reflectivity in 0.1 
intervals. If the reflection power with incident angle other than 0° is 
required, a distinction must be made between the light oscillating in 
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the plane of incidence and perpendicularly to it. Therefore, for each 
angle of incidence, two diagrams like Figure 5 are necessary, where 
again the same coordinate system as in Figure 4 will be used. The 
refractive index N depends both on the material and wave-length of the 
incident light. For each material and wave-length two curves, such as 
given for stainless steel (^= 436Hy^ N = 0.9 - 2.5 i) and crown glass 
in Figure 4 have to be drawn. From these curves the reflectivity for 
each angle of incidence is obtainable. The computation of the 
reflectivity for all materials would require much labor and would be 
hardly economical. However, it is planned to work out diagrams such as 
Figure 5 for«* = 0, 10, 20 80, 85, 90°, since this can be done 
without reference to specific materials. The results will be given in 
a special report. From these graphs one can extract the values needed 
to obtain the curve of the reflecting power for all possible refractive 
indices. Such tables apparently are not published as yet, and it is 
felt that they would be of great help in engineering work. 

Some remarks with respect to the refraction indices are 
necessary. Physical tables give the values of optical constants with 
great accuracy, and the values of the refractive indices of transparent 
media are presented to seven decimal places. But the determination of 

optical constants such as the index of refraction requires experiments 
which are among the most difficult ones in physics. In addition 
materials are not easily prepared or become dull within a short time. 

Thus, the problem may become almost unsolvable in some 
instances. In conclusion we may say that values of the refractive index 
with an accuracy of one per cent are desirable. Nevertheless, the values 
published for opaque materials are useful to get an idea of the order 
of magnitude of the reflectivity for different light frequencies. In 
the case of newly developed materials used for satellites, special 
measurements of the reflectivity will be necessary. 

II.  THE EFFECT OF RADIATION ON BODIES OF DIFFERENT SHAPES 

Among the surfaces, the plane surface element evidently is the most 
important. In the following sections we will consider the element and 

the plane itself. We shall also deal with bodies which are symmetric 
with respect to the light direction. Such bodies can have convex or 
concave form.  In this report only bodies with a convex surface will be 
considered. A future report will deal with the behaviour of the radiation 
pressure on concave bodies, among which the parabolic and the spherical 
mirrors are the most important. Finally, cylindrically shaped bodies 
are of interest, and we shall study here the right circular cylinder 
whose axis of symmetry is perpendicular to the direction of light. 
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A. The Surface Element 

We consider a surface element dA0 with the exterior normal n 
located at the origin of a rectangular coordinate system, x, y, B, with 
unit vectors i, j, k. The light travels in the negative y-direction; 
after the reflection on the surface element, it has the direction A   • 
From geometric optics it follows that the incident angleo^, the angle 
between n and -j, is the same as the angle between n and .4 , and that 
the three vectors are in one plane, called the plane of incidence. This 
plane cuts the plane y = o in a line which makes an angle,^v, with the 
8-axis, Figure 6. 

T^e acting radiation force we shall write in the form 
F = xi + yj + E k. Then the force element, produced by the incoming 
light emerges as: 

=  ~/6§ • /M* 4A,   (/ - TT*^/ (21) 

The radiation force produced by the reflected light works in the opposite 
direction of the reflected beam and becomes: 

Since 

(22) 

(23) 

and 

eC r       is given by: 
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CLP*' *    ~/>,**H<'<t40'2Co()' 
(25) 

(n**4.J'*iH,Z9(i +trtZ*d+4*jf'/U**'3i*Jk), 

In the differentials for the radiation force, given by the equations (21 
and 25), the functions T («0 and R (cC) are still unknown. Values of 
T (n(a,),«0and R (n(^),«it) for given N, n, and *» can be calculated 
by the equations (10) through (18). The characteristics of both 
functions are the same and in order to discuss them we use only R. We 
consider a surface element for which the angle interval c<  < c^ < o(. 
is small enough so that the reflectivity is only a function of the wave- 
length of the light. The part of the reflected intensity which belongs 
to the wave-length A/is written as R (n(;i0 , (O . 7.^;^ where ^X   refers 
to the intensity of the incident light. Then the Quantity R (*,) 
obtained by the integration of the reflectivity over the whole energy 
spectrum; 

ft* 

* (26) 

J     lx   *CZ 
0 

gives the reflectivity associated with the angle £& in the above range. 
In order to master this integration the radiation is divided into 
d A»-intervals in which values of R are represented by R  (cO and 
given by: « j 

HfU) - —-— / ^*McC* 

l)  becomes: ^^ ^      /I* 

JlL-i ILL  (27) 

Thus R (ct) becomes 

■* (*) 

with A/«0  and  /l; 
* r 
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In the same way we introduce a transparency function T (c(/): 

r(ct)   .      tX 2£*. / (28) 

where 0 

In order to calculate these functions we can use tables or graphs, such 
as given by Figures 2 and 4. 

B. The Body of Arbitrary Shape 

The force acting on an arbitrary body is obtained by integration 
of the forces which act on the surface elements. Thus we have: 

A (30) 

The surface element dAo will depend on two variables, one of which we can 
often take as the angle of incidence,^, whereas the other one will be 
determined by the shape of the body we consider. Let this variable be 
denoted by f . In most cases, the surface element can then be written 
as 

oM, * ^(oc.fJoCoceCf j (31) 

so that 

F'     *    p.   S J{'-Wjf &,])*•«*}'*'<*'     (32) 
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For short we put: 

(33) 

Thus the force takes on the form: 

(34) 

But the values of the functions T («t) and R (<C) are given only for 
angle intervals «^ ^ "^ ^ «^ • Therefore, we have to 

sum the integrals over all angles ob : 

■&*/ 

%., 

where «U 
T* 

s 

"t 

I 

Analogously 

\ - 

"t 

1 

4-/ 

(35) 

T(*J cU. 
(36a) 

(36b) 

The integral becomes dimensionless by dividing through the projected 
area /) fcamfj as seen from the direction of the incoming light: 

(37) 
- y  i   i / ~ T   i . -F^.j.h.A.±J_ /V/-rJ. 

if-/ «r 

Cf (o()''t*9oCd'& 
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In the same way, the radiation force of the reflected light becomes: 

/*'/ ^H (38) 

We introduce the notation Cp and write the force components as: 
v 

JL AS-1 (39) 

The coefficients Cp are given by: 

p ^   ^/   «^ 

A it c; -1/ Kiw^w^y 

X     "A,/ ^^ 
(40) Cp * ^1 |V^^*^/^^* 

^   y 
^•^    a   -L ^    j     $(•()' Ttt'CHUOtof^JcCfiC* 

* n    *"   "A-, 
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The equations (39), F = cF x A x p0, (41) 

have the shape of the aerodynamic equation for the drag: 

D = CD x A x q, (42) 

(CQ = drag coefficient, q = dynamic pressure). 
Therefore, cF might be termed the "radiation force coefficient"; it is 
a function of the shape and of the optical properties of the body 
considered. 

C. The Surface Element of a Symmetrical Body 

In the following we consider only such bodies which are 
symmetrical relative to the light direction, in the sense that the 
individual force components normal to the incident light cancel each 
other, e. g., spherical and parabolic surfaces and the cone and cylinder 
in suitable orientations. The only force component is then in (-j) 
direction. One exception will be the plane surface inclined towards 
the light direction. 

Let dA in Figure 7 be a surface element of any symmetrical 
body; let the plane of incidence be the drawing plane. The element of 
the projected area, dA, becomes; 

Then the acting force, dF, is given by: 

i     r 
The radiation force coefficients, Cp, and Cp, are: 

Cp        *      I -   T(*) (44) 



19 

Special values for the radiation force coefficient are determined as 
follows: 

Opaque Materials 

1. Medium with total absorption 

Cr*   I 

Medium with ideal reflection 

Cp     S / + C*92c(     *   Z A49** 

3. Medium with partial reflection 

Cp * /+XM'<****- 

Transparent Materials 

4. Medium without absorption 

HW + rct) * / 

s   HC*)-( I +****) 

r ZUM' ***l0<" 
From the above four cases it can be seen that the radiation force 
coefficient attains the value 2 only at normal incidence of light and 
for ideally reflecting materials (case 2). At an incident anglefl^ = 45° 
the reflected light yields no force component in the direction of the 
incident light. We then have Cp = 1 for all opaque materials. For 
angles of incidence U >   45° all reflecting materials have a force 
component opposite to the light direction; Cp is smaller than unity and 



20 

goes to zero with Ot* + y . 

D. The Plane Surface (Solar Sail) 

We consider a plane disc which may serve as an idealized model 
of a solar sail, the flight dynamics of which will be discussed briefly. 
The position of this plane body is indicated in Figure 8. 

In the absence of reflectivity, the disc will be accelerated 
in the direction of the sun's light independent of inclination. 
Therefore, only drag is present. A reflecting disc also has a lift 
component. From the equations (21) and (25) where 7 can be taken as zero 
the acting force on a solar sail becomes: 

? *K+*z *i>*'*(~cU~ciJ*cik*) (45) 

with 

Fy 
C1    s     %(*)'**** 

D (46) 

The course of the solar sail is determined by the lift/drag ratio which 
gives the course angle OC   : 

For opaque materials 

tJU«/ oC-   - 
c/ TiM-^u,^ (47) 

^ (D   ^D l + %&<**** 
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For transparent materials without absorption 

7VO * RC«) * I 

(48) 

For an opaque plane sail, the values of the radiation force coefficients 
CL and CD as functions of R (c^) are given in Figure 9. The maximum of 
the lift F is found by differentiation with respect to at of the 
expression: 

while R is kept constant. The maximum of F occurs as the angle 

without dependence on the value of the reflectivity. 

It is worth mentioning that, in the case of a transparent 
plane-parallel plate, we get a torque due to the parallel displacement of 
the light beams. 

E. The Spherical Surface 

We consider a spherical satellite, the right hemisphere of 
which is illuminated by the sun's light (Figure 10). The radiation 
incident on an arbitrary annular section dA0 is uniform over the 
circumference of the section. We get this ring-shaped element when we 
consider a surface element da0 which is given by: 

By integration we have: 

ß** ßs* (49) 

zixr*^*o(aCQ( * Gfc)*,*. 
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The radiation force acting on a spherical calotte with the half-opening 
angle etp  is obtained by using the equations (35) through (40): 

Fy
l* f.'Sri J /^ V^w^^v 

i     r 
The radiation force coefficients Cp and Cf-Y are found as 

V        «t. 

4. - -A-1 J. ^ 4C*92<G*>OIOL<*/ 

y      *•!        A'( (52) 

Here the functions T and R are given by the equations (26) through 
(29), and (36a, b). In the following, we consider opaque materials and 
then have Tt = 0. Of special interest are materials: 

1. With total absorption, R = 0 

2. With ideal reflection, R = 1. We obtain for the 
acting forces; 

/. F *F; * io..A-c;r 

(53) 
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Fy* *  f0.4. c* = fr. (t^^yr. c* 

C« « —  / si**'***!* e*9o(a,ti, 

t j     e4*rc(     _ >^ V 7 

/ / ¥ •     & ) £. 

z**** Wp 

P   * fa'4'CF  =. p, A (' +/•*2'*J,) 
(55) 

In Figure 11 the values for the radiation force coefficient in the above 
two cases are plotted in their dependency on the half-opening angle tfC^. 
In the case of a hemisphere with ideal reflection, Cp becomes zero and 
the effect of the radiation is equal to that of a hemisphere with total 
absorption. But this result is true only with the assumption Rr = 1. 
In the interval 0° ^ fl&p i 45°, spherical surfaces with a reflectivity 
0 < R < 1 will be characterized by curves for the radiation force 
coefficient between curves 1 and 2 of Figure 11. Values for Cpy for 

spherical surfaces with larger opening angle, ~£ <. oC 5 ^—   > are not 

limited by these two lines. ^     "' *■ 

The values for the reflectivity, R (n C^/),^), are not 
available today. Therefore, we are unable to calculate the force acting 
on a metallic sphere. But we can calculate the limits for all kinds of 
materials. The upper limit will be obtained with a surface material 
excluding any force components opposite to the light direction. The 
lowest values of Cp (o</) appear when the component of the force Fr in 
direction of the incident light is zero and when, in addition, the 
component opposite to it is acting in its full amount. The limiting 
values of Cpy are given by the curves 3 and 4 in Figure 11. On the body 
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which is represented by curve 3, the area of the surface between the 
angles of incidence cC= 0° and öt = 45° consists of an ideally reflecting 
material while the zone from äs =  45° to ^ = 90° is assumed as totally 
absorbing. We get the minimum force if the inner part of the sphere's 
surface has total absorption and the outer zone possesses ideal 
reflection. When the entire hemisphere is illuminated, the values of 
Cp are limited by: 

0.75 < C_  S 1.25 
— FY 

F. The Cylindrical Surface 

We consider 1) a right circular cylinder, with its axis 
of symmetry in the B-direction, as indicated in Figure 12a,and 2) a 
cylindrical surface, which might be part of an arbitrary body (Figure 
12b). For symmetry reasons the resultant of the force components in 
x- and z-directions becomes zero. The y-component can be calculated 
from the equations (21) and (25). The anglg cClies  in the x-y-plane. 
In the case of Figure 12a we have flfry « -j" • The surface element dA0 
is; 

If Tt = 0, the force of the incoming light becomes: 

(56) 

0 *» 
(57) 

The reflected light contributes the force: 

7 *"    'H 

=     f. 
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/ 

Cp     = —:  y     I liL-/**2o<9*9c(0C0C 

~ ''' ~+"i 
In Figure 13, curves 1 and 2 give CF for Rr = 0 and Rr = 1. With the 
same arrangement as used with the spherical surface, we get the limits 
for a cylindrical body. Curve 3 in Figure 13 represents the case where 

Rr = 0 from fl^ » 0° to 0& = 45° and where Rr = 1 from &=  45° to CC=  90°. 
Curve 4 shows the opposite case with respect to the reflection. For the 
whole cylinder we get the limits: 

0.862 j* CFY 4 i-^l. 

G. The Conical Surface 

Here we deal with two cases only: (a) where the geometrical 
axis is perpendicular to the sun's radiation,and (b) where the cone's 
vertex points towards the sun. (Figures 14a and b.) 

a. Cone Axis Perpendicular to the Sun's Radiation 

The surface element dA0 at point P is a rectangle formed 
by the slant height ds and by r. djf , where r is the radius of the circle 
through the point P. (Figure 14c.) The slant height is counted from 
the vertex; thus we have r = s • sinAJ, and the surface element dA0 
becomes: 

aC4t   » aCs /ttCX* **• y^uds ■ dX (6i) 

From Figure 14a we calculate the exterior normal n: 

^»      s   •^Ü'*UtJ\'i i-A+oa t&X4 T'****'&) & (62) 

for which we had previously obtained the general relation; 
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By comparison of the coefficients we get: 

/€*9 CO • si*** jC 
"""f 
***?■ 

S****OC 

stA** 6> (63) 

sQ/iu-oC 

In the case of spherical surfaces as well as for hyperbolic and 
parabolic forms, it is practical to integrate the force produced by 
the radiation over the incident angle of the light. Here the third of 
the equations (63) shows us that Ci/ is a  function of the half opening 
angle Cfj  and of the angle Jf .    When a conical surface is only a part 
of a circular cone as in Figure 14, the size and the shape are determined 
by a suitably chosen value of the angle.j. Now we insert the results 
(63) into the equations (21) and (25). The differential of the radiation 
force for the incoming light is then found as: 

« 
^ A si 

cLF     SS  ~b0 -**•('6>Ctoto f/~T{t()JAJiX'*tbdX-T . (64) 

where the angled plays the role formerly assigned to the angle OC'. 
Similarly, for the reflected light: 

(65) 

(Z **la A*>lX ~ t) / -h 
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Formal Integration of the differential equation 64 yields: 

*z *    *\ _ (66) 

with 

jC,** and    f^ .   OH, M (^£L), 

where ^ is in the interval  "T"  a  ^^ — ^ * 

From Figure 14d, we can see that the projected area of a cone is 

si*1 s**—.6/c*o CJ     > that of the cone segment considered then becomes: 

Putting the last expression into equation (66) 

?" M -P'-A'^T^,'3L } C'-rj^XocXf   (67) 

From equation 65, it can be seen that force elements acting on surface 
elements, which are symmetric with respect to the y-z-plane, cancel each 
other, so that the i-component of the integrated force in zero. As a 
consequence: 

P   A,,   X 

* & sajt+a 4*949 *** *JC '& J  . 

(68) 
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From these equations, we get the following expressions for the radiation 
force coefficients: 

4 ■ ^ P-vw? 
■*•> 

With an ideally reflecting full cone the coefficients become: 

C      -    I 

Py 3 

m   T C*     si. /***,& •/tto Co 

The total radiation force then is: 

F = -f,.A(tl£».J+L.*i~oA**«l) 

%. 

(70) 

(71) 
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(72) 
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These forces move the cone.obliquely away from the light source. The 
course angle cC* in the ( -j, - k) - plane is given by 

C     9 

b. Cone's Axis Pointing Toward the Sun 

The radiation illuminates the lateral area A (Figure 14b) 

A        s   yt'FsJ   a       L- (73) 

The half-opening angle ^j and the angle of incidence Ci are connected by: 

If Tt = 0, the force of the incoming radiation becomes 

where / 

y 
For symmetry reasons, the reflected light has only a force component 
in the j-direction»and we have: 

F*  * ~p, A'T' 7iC*) **>*<* f 

with , 

pr 
In the case of ideal reflection, R {cC) =  1, 

(75) 

(76) 

The limits are: 

0    <    C.     < I 
7 
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Long tapers, due to the reflection force component opposite to the 
light beam, have a small resultant force component in light direction. 
As an example, for a slender taper with s/r = 5, 0^ becomes & 78.5°, 
and CfY&  0.08, if R ^ 1 (highly reflecting surface). When the cone 
angle oC   is larger than 45°, Cpy becomes smaller than unity. 

H. The Parabolic Surface 

We consider a parabolic body as sketched in Figure 15a. As in 
the case of the sphere, we select an arbitrary annular section dAo and 
a surface element dao on it. Let p be the half-parameter of the parabola. 
The shape then is given by p, and the size is determined by the half- 
opening angle «0^, , 

For the derivation of the pertinent formulas, we consider Figure 
15b. The equation of the parabola has the form: 

and as 

r Z&fC Oi/ 
(78) 

the radius of curvature of dA0 becomes: 

C^+D^i      i _        / hi'l^T^I'Ir-^-l (79) 

Thus the surface element 

The ring-shaped element dA0 is then obtained as: 

0 ' st*,*-* 

We exclude the infinite parabola so that OC  remains smaller than — , z 
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By using the equations (35) through (40), the radiation forces are found 

v    *''     r      /     i** 

^ * vry, £ j; V—^v ^ 

(82) 

^  ^A 

/»*/  •^./ 

v^i i\^^-^M 
tf « (83) 

The projected area A of the parabolic body is given by: 

A = i'F* f'T^^r (84) 

Thus we have for the radiation force coefficients: 

Fr    *~% £,„     * L    ~,\ J^ ^ (85) 

We determine CL, for different cases of R and T: 4*/ 
Fy 

Opaque Material 

1. Material with total absorption 

T a 0 71 "C 

Cp    * I 
(86) 
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2, Medium with ideal reflection: 

r *     f S 7     (87) 

3. Medium with constant reflectivity; 

Transparent Material 

4. Medium without absorption 

R + T = 1 

^V = ^\   "^ '*/i[-<Ut*uJ (89) 

From equation (87) it can be seen that in the present case CL is 
bounded by: ' 

0   <    CF     < ^ . 
7 
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III. CONCLUDING REMARKS 

These studies were made for application to computations of both a 
satellite's attitude and trajectory, which are to take into account 
the effects of the radiation pressure. 

The radiation force acting on a body is a function of certain 
physical properties, of which the reflectitivy of the body's surface is 
the most important. The force F can be expressed in the form: 

F = p0 x A x CF 

"A" means the projected area of the body and p0 is the radiation 
pressure in the vicinity of the earth. The function Cp was introduced 

in analogy to the aerodynamic expression for the drag, and may be 
called the "radiation force coefficient." The purpose of this report 
was to derive accurate formulas and limits for the radiation force 

coefficient for certain convex bodies. For finite bodies, the result 
is that Cp is limited by: 

0<CV    = 2 

Plane Surfaces 

0<CF = 2 

Spheres 

0.75  ^ CF  "^  1.25 

Cylinders 
(Illuminated perpendicularly to the axis of symmetry.) 

0.862  f CF  ^  1.471 

Cones in Special Positions 
(See Figures 14a and 14b) 

0 < CF < 2 

Parabolic Bodies 

0 < CF < 2 
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IV. APPENDIX 

The total-radiation, E, of a black body, coming from 1 cm^ of the 
surface, is given by Stefan-Boltzmann's law, which states that the 
total rate of radiation varies as the fourth power of the absolute 
temperature T, that is: 

E =e^. 

T is the absolute temperature, and ^ a constant, 

The rate of emission, Ep^ , of the radiation of any particular 
wave-length^, which passes in 1 second through each cross section of 
a radiation cone of the apertureil = 1, is given by Planck's equation: 

Here the notations are: 

^1 = •cU 

^ a t-i /Jz 

b 
%Tr    /C, 

c = the velocity of light in vacuo 

k = the gas constant for 1 molecule (Boltzmann's constant) 

h = Planck's quantum of action; with the values: 

c = 299 850 km sec"1 

k = 1,372 Watt sec degree" 

h = 0,655 x 10"33 Watt sec2 
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ci   =   5.9 x lO*6 erg cm2 sec"1 « 5.9 x 10"13 Watt cm2 

= 1.42 x lO"13 cal cm2 sec*1 

Co = 1.43 cm degree 

Q    = 5.8 x 10"5. -^ US a  = 5.8 x lO-12    Watt 
cm' sec degree cnr degree^ 

= 1.39 x lO"12-^ El1 K  
cmz sec degree4 

The connection between Planck's and Stefan-Boltzmann's equation is 
given by integration of Planck's equation over the whole spectrum, as 
follows: 

B -^  aO/L     - ^ n       T- 

This is the energy within the solid angle-Q. = 1. (Reference 8), 
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TABLE I 

THE DISTRIBUTION OF ENERGY IN THE SPECTRUM OF THE SUN 
Extraterrestical Radiation Intensity of the Sun i0^ [in 10-3 cal cm-2 

min^Jtaken from M. Nicolet, Archiv Meteor., Geophys., Bioklim. B 3 
(1951) 209 for^A. = 100 AE. Values in Smithsonian Scale 1913 minus 
2.4%, Solar Constant = 1.98 cal cm"2 min-1. 

It/*] l** ^J ^ a/>J '^X llf] ^ 

0.20 . 0.50 29.7 0.80 16.5 1.50 4.3 
0.21 - 0.51 29.7 0.81 16.3 1.55 3.9 
0.22 0.2 0.52 27.7 0.82 15.9 1.60 3.7 
0.23 0.5 0.53 28.9 0,83 15.6 1.65 3.2 
0.24 0.6 0.54 28.9 0,84 15.3 1.70 3.0 

0.25 0.8 0,55 27.6 0,85 15.0 1.75 2.7 
0.26 1.9 0.56 28.8 0.86 14,7 1.80 2.4 
0.27 2.4 0.57 28.4 0.87 14.4 1.85 2.3 
0.28 2.2 0.58 28.4 0.88 14.1 1.90 2.0 
0.29 5.1 0.59 27.5 0.89 13.8 1.95 1.9 

0.30 5.9 0,60 27.2 0.90 13.5 2.00 1.7 
0,31 8.8 0.61 26.3 0.91 13.2 2,05 1.6 
0,32 10.3 0.62 25.7 0.92 13.0 2.10 1.4 
0.33 12.6 0.63 25.1 0.93 12.7 2.15 1.3 
0.34 12.4 0.64 24.5 0.94 12.4 2.20 1.2 

0.35 13.1 0.65 24.1 0.95 12,2 2.25 1.1 
0.36 13.5 0.66 23,6 0.96 11.9 2.30 1.0 
0.37 13.5 0.67 23,0 0.97 11.7 2.35 0.9 
0.38 13.3 0.68 22.5 0.98 11.4 2.40 0,8 
0.39 14,2 0.69 21,9 0.99 11.2 2.45 0.7 

0.40 22.1 0.70 21.2 1.00 11.0 2.50 0.7 
0.41 25.1 0.71 20.7 1.05 10.0 3.00 0.37 
0.42 25.2 0.72 20.2 1.10 8.7 4.00 0.14 
0.43 23.5 0.73 19,8 1.15 7.8 5.00 0.06 
0.44 27.4 0.74 19,0 1.20 7.2 6.00 0.03 

0.45 30.0 0.75 18,7 1.25 6.6 7.00 0.01 
0.46 30.9 0.76 18,4 1.30 6.1 
0.47 30.8 0.77 17.8 1.35 5.6 
0.48 31.2 0.78 17.4 1.40 5.1 
0.49 29.0 0.79 16.9 1.45 4.7 
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TABLE II 

LIST OF ELEMENTS REPRESENTED IN FIGURE 4 

ELEMENT SYMBOL N = n - ki ^W 
Aluminum Al 0.78 - 2.85i 4310 

Cesium Cs 0.36 - 0.86i 4550 

Chromium Cr 1.64 - 3.69i 2570 

Cobalt Co 1.10 - 1.43i 2313 

Copper Cu 1.39 - 1.46i 2313 

Gold Au 1.47 - 1.44i 2540 

Iron Fe 1.01 - 0.88i 2573 

Lead Pb 2.01 - 3.48i 5890 

Magnesium Mg 0.37 - 4.42i 5893 

Manganese Mn 0.66 - 1.191 2570 

Nickel Ni 0.87 - 1.24i 2573 

Platinium Pt 1.29 - 1.96i 2749 

Potassium .  K 0.08 - l.OOi 4720 

Rhodium Rn 1.54 - 4.67i 5790 

Silver Ag 1.41 - l.lli 2263 

Sodium Na 0.06 - 1.84i 4350 

Tantalum Ta 2.10 - 2.18i 4730 

Tin Sn 1.12 - 3.33i 2570 

Vanadium V 2.55 - 3.08i 4970 

Wolfram W 2.76 - 2.711 5790 

Zinc Zn 0.55 - 0.611 2573 

Steel St 1.47 - 2.031 2540 
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Figure 6 

The Surface Element dA, 
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Figure 7 
The Radiation Force Acting on a Surface 
Element dA0 of a Symmetrical Body 
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Figure 8 

The Flight Characteristic of a Solar Sail 





j47a 

0 
Sun 

jFigure 10a 
The Radiation Force Acting on a Spherical Body 
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The Surface Element da0 of a Spherical Eody 
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Figure 12a Figure 12b 

Figure 12a 
Figure 12b 

The Radiation Force Acting on a Cylindrical Body 
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The Radiation Force Acting 
on a Right Circular Cone 
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Figure 14b 

Figure 14c 

Figure 14c 

The Radiation Force Acting on a Right Circular Cone 

The Surface Element 
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The Projected Area of a Right Circular Cone 
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Figure 15a 

The Surfte« Element d»e 

of a Paraboloid 
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Figure 15b 

The Radiation Force Acting on a Paraboloid 



53 

REFERENCES 

1. A. Unsoeld, Physik der Sternatmosphaeren, Julius Springer (Berlin) 

1938 

2. Clabon Walter Allen, Astrophysical Quantities, London 1955 

3. Linke's Meteorologisches Taschenbuch, Leipzig 1953 

4. Julius Adams Stratton, Electromagnetic Theory, McGraw Hill Vieweg 
and Sohn, 1941 

5. R. Minkowski, Theorie der Reflexion, Brechung and Dispersion, Muell« 
Poulllets Lehrbuch der Physik, Vieweg and Sohn (Braunschweig) 1929 

6. American Institute of Physics Handbook, McGraw Hill Book Co., Inc 1' 

7. J. D'Ans and E. Lax, Taschenbuch fuer Chemiker and Physiker, Vieweg 
and Sohn, Berlin, 1943 

8. M. Czerny and G. Hettner, Gesetze der schwarzen Strahlung, 
Mueller-Pouillets Lehrbuch der Physik, Vieweg and Sohn 
(Braunschweig) 1929 

NASA - Ltiflqr Plild, V» 



UNCLASSIFIED 

UNCLASSIFIED 


